PHTN1432 Optical Calibration / MDM Filters (2018W)

_____ / 50 Total

__ /-10 Prelab (if not submitted 15 minutes prior to lab)
 __ Basic design OK (physical thickness, film order) __ Glass substrate shown
 __ Correct \(\lambda \) design
 __ Correct peak matches (full wavelength)

__ /6 Procedure
 __ Basic procedure for filter deposition
 __ Details (chamber pressure, layer thickness, dep monitor values)
 __ Complete details needed to reproduce the calibration process
 __ Complete description including mathematical equations of how analysis was accomplished for ONE substrate

__ /42 Analysis – All filters

<table>
<thead>
<tr>
<th># (identify central)</th>
<th>C (Y/N)</th>
<th>Spectrum (Y/N)</th>
<th>FilmStar (Y/N)</th>
<th>Full (\lambda) (Vis/UV)</th>
<th>Half (\lambda) (IR/Vis)</th>
<th>All peaks modelled (Logically)</th>
<th>Dielectric thickness</th>
<th>Tf from spectrum</th>
<th>Tf from (R^2) model</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Diagram Lambda3B Complete model matching all observed peaks From FilmStar Model

Total Marks (4 central substrates * 7 marks each)

| 1 | /16 | | /4 | /4 | /4 | /28 |

Total Marks (4 secondary substrates * 2 marks each, includes those not analyzed [3])

| 1 | /8 | | /2 | /2 | /2 | /14 |

Notes: [1] Your FilmStar peaks must match all observed peaks by \(\lambda \) including those in the IR
 If FilmStar model shows peaks not on the observed spectrum, likely the model is too thick
 This results in illogical tooling factors \(\rightarrow \) given that films further from the monitor will logically show thinner films
 Scale thickness logically (use R-squared as basis) … furthest is NOT half as thick (!) but rather scaled – expect 75% of design

 [2] /1 attempt, /1 match one peak only, /2 match all peaks including 1, ½ … conspicuous in the IR

 [3] For unanalyzed, transmission spectrum must be reported & reasons outlined (Half-wave peak _is_ viable though for analysis)
 Any peak in range indicates analysis is possible

Notes (on the basic method employed):

__ /2 Summary
 __ Summarize tooling factors (chart – distance to filament, peak wavelength, thickness from FilmStar, Tf)
 __ Diagram of the substrate holder (showing North) with all corresponding tooling factors

__ Penalties
 __ No Title Page
 __ No Folder
 __ Plagiarized FilmStar reports (ZERO)